CYD3A3185-TOF

激光测距模块

Revision: V1.00 Date: May 5, 2023

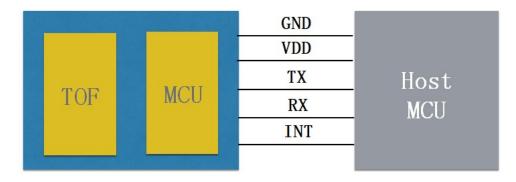
目录

特性(Features)	3
概述(General Description)	
应用领域(Applications)	3
方框图(Block Diagram)	3
引脚图(Pin Assignment)	4
引脚说明(Pin Description)	4
技术规格(Technical Specifications)	5
极限参数(Absolute Maximum Ratings)	5
建议工作条件(Recommended Operating Conditions)	5
直流电气特性(D.C. Electrical Characteristics)	5
交流电气特性(A.C. Electrical Characteristics)	5
功能描述(Functional Description)	6
功能流程(Functional Processes)	6
功能总表(Summary table of features)	6
上电复位(Power-on reset)	6
通信接口(Interface)	
UART 接口 (UART Interface)	6
应用电路(Application Circuits)	
尺寸规格(Dimensions)	9

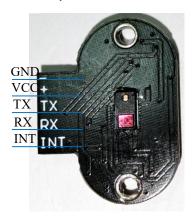
特性(Features)

测量范围: 2cm-300cm
 测量精度: ≤4%或±1cm
 供电方式: SH1.0-5P
 工作电压: 4.0~5.5V
 工作电流: 30mA
 休眠电流: 15uA

● 通讯方式: UART通讯 (波特率9600)


概述(General Description)

CYD3A3185-TOF 是一款激光测距专用模块,可针对不同材质的物体,提供高精度的距离测量。探测距离为 2cm~300cm;可应用于多种近距离距离测量场景。激光测距适合各类智能居家电子产品使用,如智能灯具、机器人避障、投影仪。提供 UART 输出模式供用户选择,可快速调整各项模块特性。模块化设计,拥有快速且便利的开发优势,可有效缩短产品开发周期。


应用领域(Applications)

- 智能灯具
- 机器人避障
- 投影仪

方框图(Block Diagram)

引脚图(Pin Assignment)

引脚说明(Pin Description)

引脚符号	功能	类型	说明
VDD	VCC	PWR	主控板电源供电
GND	GND	PWR	接地
INT	INT	INT	INT引脚
RX	DATA	I	波特率为 9600bps 的UART接收引脚
TX	DATA	0	波特率为 9600bps 的UART发送引脚

注: PWR: 电源; I: 数字输入; O: 数字输出;

技术规格(Technical Specifications)

极限参数(Absolute Maximum Ratings)

电源电压 $V_{SS}\text{-}0.3V \sim V_{SS}\text{+}6.0V$ 输入电压 $V_{SS}\text{-}0.3V \sim V_{DD}\text{+}0.5V$ 最大功耗 165mW

注: 这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围 外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

建议工作条件(Recommended Operating Conditions)

为达到模块的最佳效能,建议让模块工作在-20℃~70℃ 温度区间。若长期工作在高温(>70℃)环境,会导致模块加速老化,出现不可预期的状态。

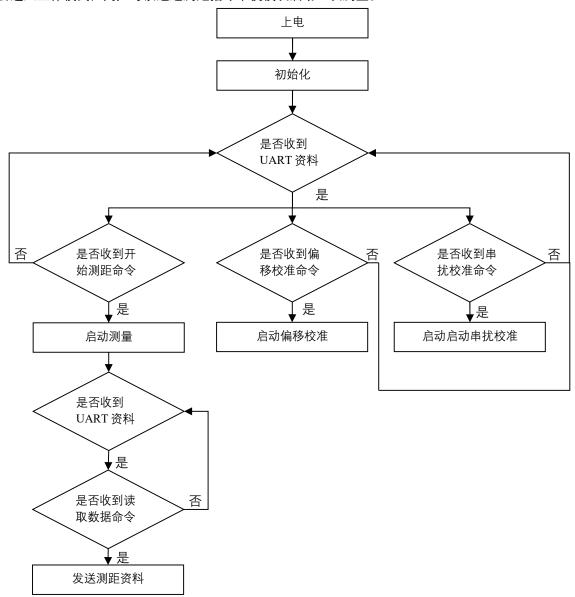
直流电气特性(D.C. Electrical Characteristics)


 $Ta=25^{\circ}C, V_{DD}=5V$

符号	参数		测试条件		典型	最大	单位
19 5	多奴	VDD	条件	最小	典望	取八	丰区
$V_{ ext{DD}}$	工作电压			4.0	5.0	5. 5	V
$I_{ exttt{DD}}$	工作电流	5. OV	5. OV 正常上电		30	_	mA
$I_{ m sleep}$	休眠电流	5. OV	5.0V 模块完全停止工作		14	16	uA
V _{IL}	低电平输入电压		_		_	0. 2V _{DD}	V
V_{IH}	高电平输入电压			0.8V _{DD}	_	$V_{\scriptscriptstyle DD}$	V

交流电气特性(A.C. Electrical Characteristics)

UART 界面 (UART Interface)


符号	参数	测试条件		最小	典型	最大	单位
10.2	3	V _{DD}	条件	42.1.	大王	収八	一中四
BDR	UART 波特率	_	_	_	9600	_	bps
tidle	UART 每笔数据传输间隔时间		_	10			ms

功能描述(Functional Description)

功能流程(Functional Processes)

系统上电后模块初始化,会先通过 IIC 配置激光传感器,这个过程约 20ms,需要等待激光传感器初始化完成。接着进入工作模式,用户可以通过测距指令来使模块启动一次测量。

CYD3A3185-TOF 功能流程图

功能总表(Summary table of features)

功能支持	说明
启动测距	通过 UART 发送命令进行一次测距
Offset 校准	通过 UART 发送命令,让模块进行一次偏移校准。
串扰校准	通过 UART 发送命令,让模块进行一次偏移串扰校准。

上电复位(Power-on reset)

发生在单片机上电后。除了保证程序储存器从开始地址执行,上电复位也使得其他寄存器被设定在预设条件。所有的输入/输出埠控制寄存器在上电复位时会保持高电平,以确保上电后所有引脚被设定为输入状态。

通信接口(Interface)

该模块支持 UART 通信方式,在 UART 通信模式下,主控设备可向模块发送命令对模块模式功能进行控制,详细通信方式请参照 UART 章节。

在 UART 模式下可以启动测距,启动偏移校准,启动串扰校准。

UART 界面 (UART Interface)

UART 协议(UART Protocol)

UART 通讯波特率: 9600 数据位: 8位、停止位: 1位、校验位: 无通讯帧格式:

主机写数据

帧头	命令	地址	数据长度	数据	校验和
(Head)	(MOD)	(ADDR)	(LEN)	(LEN)	(Checksum)
1 byte	1 byte	1 byte	1 byte	nbyte	

模块返回

帧头	状态	校验和
(Head)	(status)	(Checksum)
1 byte	1 byte	1 byte

主机读数据

帧头 命令 地址 数据长度 校验和

(Head)	(MOD)	(ADDR)	(LEN)	(Checksum)
1byte	1 byte	1 byte	1 byte	1 byte

模块返回

帧头	命令	地址	数据长度	数据	校验和
(Head)	(MOD)	(ADDR)	(LEN)	(LEN)	(Checksum)
1byte	1byte	1byte	1 byte	nbyte	1 byte

说明: 帧头固定为 0x55, , 地址为要操作的模块寄存器地址, 校验和为从帧头开始, 各数据之和取低 8 位。

主机写命令表如下:

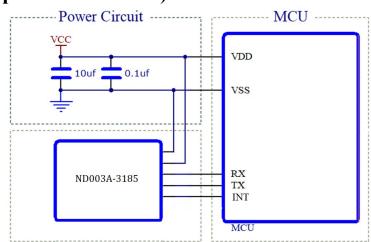
	10 4 MV	- I ·					
功能	描述	帧头	命令	地址	数据长 度	 数据 	校验和
启动一测		0x55	0xC0	0x81	0x01	0x01	0x98
启动偏移		0x55	0xC0	0x81	0x01	0x02	0x99
启动· 串扰:		0x55	0xC0	0x81	0x01	0x04	0x9A

注: 启动偏移校准、串扰校准需要约 10S 才能完成,期间不要操作模块。

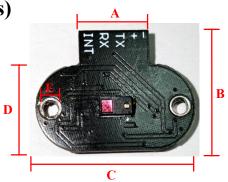
从机返回数据如下:

功能描述	帧头	信息	校验和
写入成功	0x55	0x7F	0xD4
写入失败	0x55	0x7E	0xD3

主机读命令表如下:


功能描述	帧头	命令	地址	数据长度	校验和	备注
读取数据是 否有效标志 位	0x55	0x80	0x20	0x01	0xF6	当 bit0 为 1, 数据有效,否 则无效
读取测距数 据	0x55	0x80	0x83	0x02	0x5A	返回的距离数 Byte0 为高 八,Byte1 为 低八位,测距数 据为高八位

读取模块 ID	0x55	0x80	0x80	0x01	0x56	模块的 ID 为 0x56
---------	------	------	------	------	------	------------------


从机返回数据如下:

力能描述	帧头	命令	地址	数据长度	数据(n)	校验和
	0-55	07/00	发送读命令	数据长度	主机发送读命令	帧头+命令+地址+数据
	0x55	55 0XC0	时的地址		时的数据	长度+数据 n.

应用电路(Application Circuits)

尺寸规格(Dimensions)

编号	单位			
	mm	inch		
A	10	0.39		
В	17	0.669		
С	22	0.866		
D	12	0.472		
Е	2.1844	0.086		